39 research outputs found

    Blind Quality Assessment for in-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training

    Full text link
    Image quality assessment (IQA) is very important for both end-users and service-providers since a high-quality image can significantly improve the user's quality of experience (QoE) and also benefit lots of computer vision algorithms. Most existing blind image quality assessment (BIQA) models were developed for synthetically distorted images, however, they perform poorly on in-the-wild images, which are widely existed in various practical applications. In this paper, we propose a novel BIQA model for in-the-wild images by addressing two critical problems in this field: how to learn better quality-aware feature representation, and how to solve the problem of insufficient training samples in terms of their content and distortion diversity. Considering that perceptual visual quality is affected by both low-level visual features (e.g. distortions) and high-level semantic information (e.g. content), we first propose a staircase structure to hierarchically integrate the features from intermediate layers into the final feature representation, which enables the model to make full use of visual information from low-level to high-level. Then an iterative mixed database training (IMDT) strategy is proposed to train the BIQA model on multiple databases simultaneously, so the model can benefit from the increase in both training samples and image content and distortion diversity and can learn a more general feature representation. Experimental results show that the proposed model outperforms other state-of-the-art BIQA models on six in-the-wild IQA databases by a large margin. Moreover, the proposed model shows an excellent performance in the cross-database evaluation experiments, which further demonstrates that the learned feature representation is robust to images with diverse distortions and content. The code will be released publicly for reproducible research

    How is Gaze Influenced by Image Transformations? Dataset and Model

    Full text link
    Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time consuming and expensive. Most of current studies on human attention and saliency modeling have used high quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial network (dubbed GazeGAN). A modified UNet is proposed as the generator of the GazeGAN, which combines classic skip connections with a novel center-surround connection (CSC), in order to leverage multi level features. We also propose a histogram loss based on Alternative Chi Square Distance (ACS HistLoss) to refine the saliency map in terms of luminance distribution. Extensive experiments and comparisons over 3 datasets indicate that GazeGAN achieves the best performance in terms of popular saliency evaluation metrics, and is more robust to various perturbations. Our code and data are available at: https://github.com/CZHQuality/Sal-CFS-GAN

    Geometry-Aware Video Quality Assessment for Dynamic Digital Human

    Full text link
    Dynamic Digital Humans (DDHs) are 3D digital models that are animated using predefined motions and are inevitably bothered by noise/shift during the generation process and compression distortion during the transmission process, which needs to be perceptually evaluated. Usually, DDHs are displayed as 2D rendered animation videos and it is natural to adapt video quality assessment (VQA) methods to DDH quality assessment (DDH-QA) tasks. However, the VQA methods are highly dependent on viewpoints and less sensitive to geometry-based distortions. Therefore, in this paper, we propose a novel no-reference (NR) geometry-aware video quality assessment method for DDH-QA challenge. Geometry characteristics are described by the statistical parameters estimated from the DDHs' geometry attribute distributions. Spatial and temporal features are acquired from the rendered videos. Finally, all kinds of features are integrated and regressed into quality values. Experimental results show that the proposed method achieves state-of-the-art performance on the DDH-QA database

    Simple Baselines for Projection-based Full-reference and No-reference Point Cloud Quality Assessment

    Full text link
    Point clouds are widely used in 3D content representation and have various applications in multimedia. However, compression and simplification processes inevitably result in the loss of quality-aware information under storage and bandwidth constraints. Therefore, there is an increasing need for effective methods to quantify the degree of distortion in point clouds. In this paper, we propose simple baselines for projection-based point cloud quality assessment (PCQA) to tackle this challenge. We use multi-projections obtained via a common cube-like projection process from the point clouds for both full-reference (FR) and no-reference (NR) PCQA tasks. Quality-aware features are extracted with popular vision backbones. The FR quality representation is computed as the similarity between the feature maps of reference and distorted projections while the NR quality representation is obtained by simply squeezing the feature maps of distorted projections with average pooling The corresponding quality representations are regressed into visual quality scores by fully-connected layers. Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving the top spot in four out of the five competition tracks

    Perceptual Quality Assessment for Digital Human Heads

    Full text link
    Digital humans are attracting more and more research interest during the last decade, the generation, representation, rendering, and animation of which have been put into large amounts of effort. However, the quality assessment of digital humans has fallen behind. Therefore, to tackle the challenge of digital human quality assessment issues, we propose the first large-scale quality assessment database for three-dimensional (3D) scanned digital human heads (DHHs). The constructed database consists of 55 reference DHHs and 1,540 distorted DHHs along with the subjective perceptual ratings. Then, a simple yet effective full-reference (FR) projection-based method is proposed to evaluate the visual quality of DHHs. The pretrained Swin Transformer tiny is employed for hierarchical feature extraction and the multi-head attention module is utilized for feature fusion. The experimental results reveal that the proposed method exhibits state-of-the-art performance among the mainstream FR metrics, which can provide an effective FR-IQA index for DHHs

    A No-Reference Quality Assessment Method for Digital Human Head

    Full text link
    In recent years, digital humans have been widely applied in augmented/virtual reality (A/VR), where viewers are allowed to freely observe and interact with the volumetric content. However, the digital humans may be degraded with various distortions during the procedure of generation and transmission. Moreover, little effort has been put into the perceptual quality assessment of digital humans. Therefore, it is urgent to carry out objective quality assessment methods to tackle the challenge of digital human quality assessment (DHQA). In this paper, we develop a novel no-reference (NR) method based on Transformer to deal with DHQA in a multi-task manner. Specifically, the front 2D projections of the digital humans are rendered as inputs and the vision transformer (ViT) is employed for the feature extraction. Then we design a multi-task module to jointly classify the distortion types and predict the perceptual quality levels of digital humans. The experimental results show that the proposed method well correlates with the subjective ratings and outperforms the state-of-the-art quality assessment methods

    Saliency in Augmented Reality

    Full text link
    With the rapid development of multimedia technology, Augmented Reality (AR) has become a promising next-generation mobile platform. The primary theory underlying AR is human visual confusion, which allows users to perceive the real-world scenes and augmented contents (virtual-world scenes) simultaneously by superimposing them together. To achieve good Quality of Experience (QoE), it is important to understand the interaction between two scenarios, and harmoniously display AR contents. However, studies on how this superimposition will influence the human visual attention are lacking. Therefore, in this paper, we mainly analyze the interaction effect between background (BG) scenes and AR contents, and study the saliency prediction problem in AR. Specifically, we first construct a Saliency in AR Dataset (SARD), which contains 450 BG images, 450 AR images, as well as 1350 superimposed images generated by superimposing BG and AR images in pair with three mixing levels. A large-scale eye-tracking experiment among 60 subjects is conducted to collect eye movement data. To better predict the saliency in AR, we propose a vector quantized saliency prediction method and generalize it for AR saliency prediction. For comparison, three benchmark methods are proposed and evaluated together with our proposed method on our SARD. Experimental results demonstrate the superiority of our proposed method on both of the common saliency prediction problem and the AR saliency prediction problem over benchmark methods. Our data collection methodology, dataset, benchmark methods, and proposed saliency models will be publicly available to facilitate future research
    corecore